Appendix
Laplace Transforms Involving Fractional and Irrational Operations

As the cases of integer-order systems, Laplace transform and its inverse are very important. In this appendix, the definition is given first. Then some of the essential special functions are described. Finally, an inverse Laplace transform table involving fractional and irrational-order operators is given.

A.1 Laplace Transforms

For a time-domain function \(f(t) \), its Laplace transform, in \(s \)-domain, is defined as

\[
\mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt = F(s), \quad (A.53)
\]

where \(\mathcal{L}\{f(t)\} \) is the notation of Laplace transform.

If the Laplace transform of a signal \(f(t) \) is \(F(s) \), the inverse Laplace transform of \(F(s) \) is defined as

\[
f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s)e^{st}ds, \quad (A.54)
\]

where \(\sigma \) is greater than the real part of all the poles of function \(F(s) \).

A.2 Special Functions for Laplace Transform

Since the evaluation for some fractional-order is difficult, special functions may be needed. Here some of the special functions are introduced and listed in Table A.1.

A.3 Laplace Transform Tables

An inverse Laplace transform table involving fractional and irrational operators is collected in Table A.2 [86, 300].
Table A.1 Some special functions

<table>
<thead>
<tr>
<th>Special functions</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittag-Leffler</td>
<td>$\mathcal{E}{\alpha,\beta}^{\gamma}(z) = \sum{k=0}^{\infty} \frac{(\gamma)k}{\Gamma(\alpha k + \beta)} \frac{z^k}{k!}$, $\mathcal{E}{\alpha,\beta}(z) = \mathcal{E}{1,\beta}^{1}(z)$, $\mathcal{E}{\alpha}(z) = \mathcal{E}_{\alpha,1}(z)$</td>
</tr>
<tr>
<td>Dawson function</td>
<td>$\text{daw}(t) = e^{-t^2} \int_0^t e^{-\tau^2} d\tau$</td>
</tr>
<tr>
<td>erf function</td>
<td>$\text{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-\tau^2} d\tau$</td>
</tr>
<tr>
<td>erfc function</td>
<td>$\text{erfc}(t) = \frac{2}{\sqrt{\pi}} \int_t^\infty e^{-\tau^2} d\tau = 1 - \text{erf}(t)$</td>
</tr>
<tr>
<td>Hermit polynomial</td>
<td>$\mathcal{H}_n(t) = e^{t^2} \frac{d^n}{dt^n} e^{-t^2}$</td>
</tr>
<tr>
<td>Bessel function</td>
<td>$J_\nu(t)$ is the solution to $t^2 y'' + t y' + (t^2 - \nu^2) y = 0$</td>
</tr>
<tr>
<td>Extended Bessel function</td>
<td>$I_\nu(t) = j^{-\nu} J_\nu(jt)$</td>
</tr>
</tbody>
</table>

Table A.2 Inverse Laplace transforms with fractional and irrational operators

<table>
<thead>
<tr>
<th>$F(s)$</th>
<th>$f(t) = \mathcal{L}^{-1}[F(s)]$</th>
<th>$F(s)$</th>
<th>$f(t) = \mathcal{L}^{-1}[F(s)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{t^{\alpha-1} \mathcal{E}_{\alpha,\beta}^{\gamma}(-at^n)}{(s^{\alpha} + a)^{\gamma}}$</td>
<td>$\frac{1}{s^{\alpha n}}$, $n = 1, 2, \ldots$</td>
<td>$\frac{2^n t^{\alpha n - n/2}}{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{k}{s^2 + k^2 \coth(\frac{\pi s}{2k})}$</td>
<td>$</td>
<td>\sin k t</td>
<td>$</td>
</tr>
<tr>
<td>$\frac{\log \frac{s^2 - a^2}{s^2}}{2t (1 - \cosh at)}$</td>
<td>$\frac{1}{s \sqrt{s}} e^{-k \sqrt{t}}$</td>
<td>$\frac{2}{\sqrt{\pi}} e^{-\frac{1}{\pi}k^2} - k \text{erfc} \left(\frac{k}{2\sqrt{t}} \right)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{(1 - s)^n}{s^{n \frac{1}{2} + \frac{1}{2}}}$</td>
<td>$\frac{n!}{(2n)! \sqrt{\pi} t} \mathcal{H}_{2n} \left(\sqrt{t} \right)$</td>
<td>$\frac{1}{\sqrt{b} - a} e^{-at} \text{erf} \left(\sqrt{(b-a)t} \right)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{s^2 + a^2}}$</td>
<td>$\mathcal{J}_0(at)$</td>
<td>$\frac{(1 - s)^n}{s^{n + \frac{1}{2}}}$</td>
<td>$\frac{-n!}{(2n+1)! \sqrt{\pi}} \mathcal{H}_{2n+1} \left(\sqrt{t} \right)$</td>
</tr>
<tr>
<td>$\sqrt{s^2 + 2a - s^2}$</td>
<td>$\mathcal{J}_0(at)$</td>
<td>$\frac{1}{t} e^{-at} \mathcal{J}_1(at)$</td>
<td>$\frac{k}{2} \mathcal{J}_k \left(\frac{a-b}{2t} \right)$, $k > 0$</td>
</tr>
<tr>
<td>$\sqrt{s^2 + 2a - \sqrt{s^2 + 2a + \sqrt{s^2 + 2a}}}$</td>
<td>$e^{-at} \mathcal{J}_1(at)$</td>
<td>$\frac{1}{t} e^{-at} \mathcal{J}_1(at)$</td>
<td>$\frac{1}{t} e^{-at} \mathcal{J}_1(at)$</td>
</tr>
<tr>
<td>$\frac{\sqrt{2a - s^2} - s}{\sqrt{2a + \sqrt{s^2 + 2a}}}$</td>
<td>$\alpha \mathcal{J}_\nu(at), \nu > -1$</td>
<td>$\frac{1}{(s^2 - a^2)^{k}}$</td>
<td>$\frac{\sqrt{2}}{2 \Gamma(k)} \left(\frac{t}{2a} \right)^{k-\frac{1}{2}} \mathcal{J}_k \left(\frac{t}{2a} \right)$</td>
</tr>
<tr>
<td>$\frac{\sqrt{2a - s^2 + s}}{\sqrt{s^2 - a^2}}$</td>
<td>$\alpha \mathcal{J}_\nu(at), \nu > -1$</td>
<td>$\frac{1}{(\sqrt{s^2 + 2a})^k}$</td>
<td>$\frac{\sqrt{2}}{2 \Gamma(k)} \left(\frac{t}{2a} \right)^{k-\frac{1}{2}} \mathcal{J}_k \left(\frac{t}{2a} \right)$</td>
</tr>
<tr>
<td>$\frac{\sqrt{s^2 + 2a - s}}{\sqrt{s^2 + 2a}}$</td>
<td>$\frac{k a^k}{\sqrt{s^2 + 2a}} \mathcal{J}_k \left(\frac{a-b}{2t} \right), k > 0$</td>
<td>$\log \frac{s-a}{s-b}$</td>
<td>$\frac{1}{t} \left(e^{bt} - e^{at} \right)$</td>
</tr>
<tr>
<td>$\frac{1}{s + \sqrt{s^2 + a^2}}$</td>
<td>$\mathcal{J}_1(at)$</td>
<td>$\frac{1}{\sqrt{s^2 + 2a}}$</td>
<td>$\frac{1}{t} e^{-\frac{1}{2}(a+b) t} \mathcal{J}_0 \left(\frac{a-b}{2t} \right)$</td>
</tr>
</tbody>
</table>
\begin{table}
\begin{align*}
\text{Table A.2 (continued)}
\begin{array}{|l|l|l|}
\hline
F(s) & f(t) = \mathcal{L}^{-1}[F(s)] & F(s) & f(t) = \mathcal{L}^{-1}[F(s)] \\
\hline
\frac{1}{s + \sqrt{s^2 + a^2}} & N\mathcal{F}(at), N > 0 & \frac{b^2 - a^2}{s - a^2}) & e^{a^2 t} \left[b - a \operatorname{erf} (a \sqrt{t}) \right] - be^{-b^2} \operatorname{erfc} (b \sqrt{t}) \\
\sqrt{s-a} - \sqrt{s-b} & \frac{1}{2\sqrt{\pi t^2}} (e^{bt} - e^{-at}) & \sqrt{s + 2a - \sqrt{s^2 + b}} & ae^{-at} \left[\mathcal{J}_1(at) + \mathcal{J}_0(at) \right] \\
\frac{1}{s} e^{-k/s} & \mathcal{J}_0 \left(2\sqrt{kt} \right) & \frac{1}{s} e^{-k/s} & \frac{1}{\sqrt{\pi k}} \cos 2\sqrt{kt} \\
\frac{1}{\sqrt{s}} e^{k/s} & \frac{1}{\sqrt{s}} \cosh 2\sqrt{kt} & \frac{1}{s} e^{-k/s} & \frac{1}{\sqrt{\pi k}} \sin 2\sqrt{kt} \\
\sqrt{s} & \frac{1}{\sqrt{s}} \sinh 2\sqrt{kt} & \frac{1}{s} e^{-k/s} & \left(\frac{t}{k} \right) \frac{1}{2} (\mu - 1) \mathcal{J}_{\nu - 1} \left(2\sqrt{kt} \right), \nu > 0 \\
e^{-k/\sqrt{s}} & \frac{k}{2\sqrt{\pi t^3}} e^{-\frac{1}{4} t^2} & \frac{1}{s} e^{-k/s} & \left(\frac{t}{k} \right) \frac{1}{2} (\mu - 1) \mathcal{J}_{\nu - 1} \left(2\sqrt{kt} \right) \\
\frac{1}{s} e^{-k/\sqrt{s}} & \operatorname{erfc} \left(\frac{k}{\sqrt{2}} \right) & \frac{1}{s} e^{-\sqrt{s}} & 2\sqrt{\frac{t}{\pi}} e^{-\frac{1}{4} t^2} - \operatorname{erfc} \left(\frac{1}{2\sqrt{t}} \right) \\
\frac{1}{s} e^{-k/\sqrt{s}} & \frac{1}{\sqrt{\pi t^2}} e^{-\frac{1}{4} t^2} & \frac{1}{s} e^{-\sqrt{s}} & e^{t + \frac{1}{4} t^2} \operatorname{erfc} \left(\sqrt{t} + \frac{1}{2\sqrt{t}} \right) \\
\frac{1}{s^2} & \frac{e^{-at}}{\Gamma (a)} e^{-at} & \frac{1}{s^2 + a} & e^{-at} \operatorname{erfc} \left(-at^a \right) \\
\frac{1}{s(s^2 + a)} & 1 - \frac{\mathcal{E}_\alpha (at)}{s^2 + a} & \frac{s^2 + a}{s^2 + a} & \mathcal{E}_\alpha (at) \\
\frac{1}{s^2(a - s)} & t^a \mathcal{E}_{1,1+a}(at) & \frac{s^a}{s - a} & -t^a \mathcal{E}_{1,1-a}(at), 0 < a < 1 \\
\frac{1}{\sqrt{s}} & \frac{1}{\sqrt{\pi t}} & \frac{1}{s\sqrt{s}} & 2\sqrt{\frac{t}{\pi}} \\
\frac{1}{\sqrt{s(s + 1)}} & \frac{2}{\sqrt{\pi}} \operatorname{daw} (\sqrt{t}) & \frac{\sqrt{s}}{s + 1} & \frac{1}{\sqrt{\pi t}} - \frac{2}{\sqrt{\pi}} \operatorname{daw} (\sqrt{t}) \\
\frac{1}{\sqrt{s(s + a^2)}} & \sqrt{t} \mathcal{E}_{1,3/2} \left(-a^2 \right) & \frac{s}{(s - a)\sqrt{s - a}} & \frac{1}{\sqrt{\pi t}} e^{at} (1 + 2at) \\
\frac{1}{s^2 + a^2} & \mathcal{E}_{1,1/2} \left(-a^2 \right) & \frac{1}{\sqrt{s^2 + a^2}} & \frac{1}{\sqrt{s^2 + a^2}} e^{at} \operatorname{erfc} \left(a\sqrt{t} \right) \\
\frac{1}{s\sqrt{s + 1}} & \operatorname{erf} (\sqrt{t}) & \frac{s - a^2}{\sqrt{s + a^2}} & \frac{1}{\sqrt{s + a^2}} + ae^{-a^2} \operatorname{erfc} (a\sqrt{t}) \\
\frac{1}{s^2(s - a^2)} & \frac{1}{a} e^{2t} \operatorname{erf} (a\sqrt{t}) & \frac{1}{s^2(s - a^2)} & 2e^{-a^2} \operatorname{erfc} (a\sqrt{t}) \\
\frac{1}{s^{3/2}(s + a^2)} & e^{a^2} \operatorname{erfc} (a\sqrt{t}) & \frac{s\sqrt{s}}{s + 1} & 2\sqrt{\frac{t}{\pi} - \frac{2}{\sqrt{\pi}}} \operatorname{daw} (\sqrt{t}) \\
\frac{1}{s^{1/2} + 1} & \frac{e^{-t}}{\sqrt{\pi t}} & \frac{1}{s^{1/2} + 1} & \frac{e^{-t}}{\sqrt{\pi t}} e^{\gamma} \left(\sqrt{t} \right) \\
\frac{1}{\sqrt{\pi t}} & \frac{1}{\sqrt{\pi t}} e^{t} \operatorname{erf} (\sqrt{t}) & \frac{k}{\sqrt{s + a^2}} & \left(\frac{k}{\sqrt{s + a^2}} \right)^{1/2} \mathcal{E}_{1,1/2} (\sqrt{t}, \mathcal{R}(s) > \lambda^2) \\
\frac{1}{s^a} & \frac{t^a}{\Gamma (a)} & \frac{s^a}{a^2} & \mathcal{E}_\alpha (\sqrt{\lambda^2} t^a), \mathcal{R}(s) > |\lambda|^{1/\alpha} \\
\hline
\end{array}
\end{align*}
\end{table}
<table>
<thead>
<tr>
<th>$F(s)$</th>
<th>$f(t) = \mathcal{L}^{-1}[F(s)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/\sqrt{s(s+a)(\sqrt{s+a}+\sqrt{s})}$</td>
<td>$1/a^\nu e^{-at/2} \mathcal{J}_\nu \left(\frac{a}{2} \right), , k > 0$</td>
</tr>
<tr>
<td>$\Gamma(k)$</td>
<td>$\sqrt{\pi} \left(\frac{t}{a-b} \right)^k \frac{1}{2} e^{-\frac{1}{2} (a+b)t} \mathcal{J}_k - \frac{1}{2} \left(\frac{a-b}{2} - t \right)$</td>
</tr>
<tr>
<td>$1/\sqrt{s^2+a^2(s+\sqrt{s^2+a^2})}$</td>
<td>$J_N(at)/a^N$</td>
</tr>
<tr>
<td>$b^2-a^2/\sqrt{s(s-a^2)(\sqrt{s+b})}$</td>
<td>$e^{a^2t} \left[\frac{b}{a} \text{erf} \left(\frac{a}{\sqrt{t}} \right) - 1 \right] + e^a^2t \text{erfc} \left(b\sqrt{t} \right)$</td>
</tr>
<tr>
<td>$ae^{-k\sqrt{s}}s(a+\sqrt{s})$</td>
<td>$-e^{a^2t} e^{-a^2t} \text{erfc} \left(a\sqrt{t} + \frac{k}{2\sqrt{t}} \right) + \text{erfc} \left(\frac{k}{\sqrt{t}} \right)$</td>
</tr>
<tr>
<td>$1/\sqrt{s+a(a+b)s+b}$</td>
<td>$te^{-\frac{1}{2} (a+b)t} \left[\mathcal{J}_0 \left(\frac{a-b}{2} - t \right) + \mathcal{J}_1 \left(\frac{a-b}{2} - t \right) \right]$</td>
</tr>
<tr>
<td>$e^{-\sqrt{s}}/\sqrt{s+1}$</td>
<td>$e^{-\frac{1}{\sqrt{t}}} - e^{t+1} \text{erfc} \left(\sqrt{t} + \frac{1}{2\sqrt{t}} \right)$</td>
</tr>
<tr>
<td>$e^{-\sqrt{s}}/s(\sqrt{s}+1)$</td>
<td>$\text{erfc} \left(\frac{1}{2\sqrt{t}} \right) - e^{t+1} \text{erfc} \left(\sqrt{t} + \frac{1}{2\sqrt{t}} \right)$</td>
</tr>
</tbody>
</table>
References

68. B.S.Y. Sánchez. Fractional-PID control for active reduction of vertical tail buffeting. MSc Thesis, Saint Louis University, St. Louis, USA, 1999
70. D. Valério. Fractional order robust control: an application. Student forum, University of Porto, Portugal, 2001
91. A. Oustaloup. Linear feedback control systems of fractional order between 1 and 2. Proc. of the IEEE Symposium on Circuit and Systems. Chicago, USA, 1981,
References

110. C.A. Monje, B.M. Vinagre, Y.Q. Chen, et al. Proposals for fractional PI$^\lambda$D$^\mu$ tuning. Proceedings of The First IFAC Symposium on Fractional Differentiation and its Applications (FDA04), Bordeaux, France, 2004
119. A. Oustaloup. From fractality to non integer derivation through recursivity, a property common to these two concepts: a fundamental idea from a new process control strategy. Proceedings of the 12th IMACS World Congress. Paris, France, 1998, 203–208
128. D.F. Thomson. Optimal and Sub-Optimal Loop Shaping in Quantitative Feedback Theory. West Lafayette, IN, USA: School of Mechanical Engineering, Purdue University, 1990
135. J. Cervera, A. Baños. Automatic loop shaping in QFT by using a complex fractional order terms controller. Proceedings of the 7th International Symposium on QFT and Robust Frequency, University of Kansas, USA, 2005

189. The MathWorks Inc. Genetic Algorithm and Direct Search Toolbox, 2009

274. V. Feliu, R. Rivas Pérez, F.J. Castillo García. Fractional robust control to delay changes in main irrigation canals. Proceedings of the 16th International Federation of Automatic Control World Congress, Prague, Czech Republic, 2005

Index

accelerometer, 266, 282
active suspension, 76
actuator saturation, 128, 250, 254, 273, 327, 331
adaptation gain, 175, 176, 178
adaptive control, 74, 174, 188, 287
AMIGO method, 101, 102
anomalous relaxation, 14, 259
antiderivative, 5
arbitrary order, 4, 9
argument principle, 23
armature circuit current, 280
asymptotic stability, 376
auto-tuning, 76, 133, 141–147, 353, 358, 359
bilinear transformation, 198
binomial coefficient, 7, 218, 222
block diagram, 77, 78, 176, 212, 213, 243–248, 253, 256, 285, 286, 312, 376, 380
Bode plot, 107, 112, 126, 152, 241, 289, 315, 373
magnitude Bode plot, see magnitude Bode plot
bounded-input bounded-output, 21, 37, see BIBO
buck converter, 76, 365, 366, 367, 371, 376, 378, 384, 387, 388
canonical state-space representation, 37
controllable form, see controllable canonical form
Jordan form, see Jordan canonical form
modal canonical form, see modal canonical form
observable form, see observable canonical form
Caputo’s definition, 11, 13, 36, 43, 214, 217, 220
Cauchy principal value, 21
Cauchy’s argument principle, 23
Cauchy’s formula, 6, 7, 10, 218, 219
Cayley–Hamilton method, 46–53
Cayley–Hamilton Theorem, 46
CFE, see continued fraction expansion
characteristic equation, 22, 25, 26, 42, 46, 170, 178
characteristic parameter, 32
characteristic polynomial, 22
charge transfer, 262
Clegg integrator, 181–183
closed-form solution, 159, 213, 221–223, 231, 243, 249
collision avoidance, 273, 277, 300
commensurate-order system, 17, 18, 22, 26–28, 35–37, 43, 54, 56, 74, 224–226, 237, 239, 260
compensating term, 283
complementary sensitivity function, 90, 123
difference equation, 64
complex plane, 19, 24, 26, 37, 77–79, 90, 135–137, 146, 289
condition number, 261, 264, 266
constant overshoot, 151, 273, 287, 291, 300
constant phase element, 4, 262
constant phase margin, 75, 151, 286–288
constrained optimization, 252
continued fraction, 192–193, 195, 197, 383
control law, 128, 134, 165, 166, 168, 170, 279, 283, 327, 361, 375–378
Control System Toolbox, 213, 231, 241, 256
controllability, 35, 54–56, 275
controllability criterion, 56, 71
controllability Gramian, 69
controllability matrix, 56
controllable canonical form, 38, 50, 52, 53, 56, 58
d-convolution, 6, 10, 43, 259
Coulomb friction, 277, 280, 281, 283, 297, 298, 300
coupling torque, 280, 281, 283–285, 292, 295, 300
CPE, see constant phase element
critically damped, 283, 286
CRONE controller, 31, 76, 134, 151, 151–157, 159, 162
d-stability, 278
damped oscillation, 14, 20, 27
damping ratio, 32, 33, 122, 154–156, 314
data acquisition, 115, 126, 146, 353, 355, 384
DC/DC converter, 365–369, 371, 387
dead beat, 365
delay dominant, 97–99, 101, 104
derivative action, 4, 77, 79, 80
describing function, 183
design specification, 121, 122, 124, 126, 129, 142, 158, 161, 162, 166, 181, 289, 314, 317, 356, 361, 374, 375, 381
DF, see describing function
diagonal matrix, 50, 369
diagonalizable, 369
diffusion, 4, 259, 261, 265, 271
Dirac’s delta function, 43
direct discretization, 196
direct transmission matrix, 35
discrete implementation, 196–201, 291, 300
discrete-time, 59–74
discretization, 60, 61, 196, 197, 199, 296, 326
direct discretization, see direct discretization
indirect discretization, see indirect discretization
Tustin method, see Tustin method
distributed mass, 292
distributed-parameter systems, 271
dominant time constant, 311, 323
double integrator, 165–170, 273, 282, 284, 295, 300
dominant time constant, 279, 283, 327, 361, 375–378
elastic limit, 295, 297
elastic manipulator, 275
electrical dynamics, 280
electrochemical process, 260, 261, 265, 271
electromechanical actuator, 280
d-end effector, 273, 274
equivalent control, 168, 170, 172, 377–380
equivalent electrical circuit, 4, 261
erfc function, 51
Euler–Bernoulli beam, 266
evolutionary algorithm, 159, 162, 163
expanded state, 61
exponential function, 13, 44, 214, 215
F-MIGO method, 88–92, 95–97, 100–104
fast Fourier transform, 16
FDE, see fractional-order differential equation
feasible region, 124
feasible solution, 97, 124, 388
feedforward, 177, 276, 278, 352, 386
feedforward gain, 180
FFT, see fast Fourier transform
Final-Value Theorem, 123, 288, 313, 320
finite differences formula, 297
finite impulse response, 198
finite-dimensional system, 191, 198, 205, 212, 296
finite-time ITAE criterion, 213, 249, 250, 253, 256
FIR, see finite impulse response
first-order backward difference, 61
first-order forward difference, 60
first-order plus dead-time, 87, 95, 107
flatness of the phase curve, 133, 135, 140, 142, 145, 147
flexible manipulator, 77, 273–276, 289, 292, 297
multip-link flexible manipulator, see
multi-link flexible arms
single-link flexible manipulator, see
single-link flexible arm
two-link flexible manipulator, see
two-link flexible arms
flexible robot, 266, 274–276, 292
flexible structure, 260, 271, 275, 278
flexible transmission, 76
FOLLC, see fractional-order lead-lag compensator
FOPDT, see first-order plus dead-time
force control, 274
FOTF object, 196, 213, 232, 232–243, 256
Fourier transform
inverse Fourier transform, see inverse Fourier transform
fractional calculus, 3, 4, 7, 12, 17, 75, 76, 214–231
Caputo’s, see Caputo’s definition
Cauchy’s formula, see Cauchy’s formula
Grünwald–Letnikov’s, see Grünwald–Letnikov’s definition
Riemann-Liouville’s, see Riemann-Liouville’s definition
fractional horsepower dynamometer, 115
fractional sliding mode control, 365, 375–380, 388
fractional sliding surface, 367, 378–380
fractional switching function, 170
fractional-order, 391
fractional-order transfer function, see FOTF
fractional-order control, 34, 75–84
CRONE, see CRONE
FOLLC, see fractional-order lead-lag compensator
F_{RS}SMC, see fractional-order sliding mode control
PD^{\mu}, see fractional-order PD
PI^{\lambda}D^{\mu}, see fractional-order PID
PI^{\lambda}, see fractional-order PI
FPI-PI, see FPI-PI controller
QFT, see QFT
reset control, see reset control
fractional-order delay system, 245
fractional-order differential equation, 12–16, 213, 214, 221–231, 239, 240, 245, 256, 264
fractional-order Kalman filter, 74
fractional-order lag compensator, 133, 138
fractional-order lead compensator, 133, 142
fractional-order lead-lag compensator, 130, 141, 147
fractional-order PD, 107–119
fractional-order PI, 87–106, 301, 303, 304, 312–352
fractional-order PID, 76, 81–83, 236, 255, 287, 303, 365, 378, 388
fractional-order transfer function, see FOTF
frequency domain identification, 201, 260, 296, 361
F_{RS}SMC, see fractional-order sliding mode control
gain crossover frequency, 31, 75, 76, 107, 109, 111, 122, 135, 138, 141, 145, 152, 161, 199, 289
gain margin, 32, 154, 301, 303, 314–316, 324, 328, 329
generalized hyperbolic function, 259
generalized Mittag–Leffler function, 215, 216
global optimization, 124
Grünwald–Letnikov’s definition, 7, 11, 12, 15, 16, 60, 61, 63, 71, 214, 217–221, 323
gradient approach, 174
H_{2} norm, 76, 205, 206, 212, 242
H_{\infty} norm, 242
high-frequency dynamics, 277, 334
high-frequency gain, 160
high-frequency noise, 4, 80, 122
homogeneous difference equation, 62
hydraulic actuator, 76
IAE, 90, 249
ideal cutoff characteristic, 75
ideal sliding mode, 168
identity matrix, 36
IE, 90
HRI, see infinite impulse response
immersed plate, 56, 58
impedance measurement, 261
impulse response, 13–15, 27, 224, 226, 227, 260
impulse response invariant, 192, 198, 200
indirect discretization, 196, 296, 358
infinite impulse response, 197
infinite-dimensional system, 61, 66, 269, 271
initial condition, 4, 13–15, 18, 36, 69, 70, 82, 95, 124, 125, 133, 141, 166, 223, 225, 227, 277, 287
input matrix, 35
integer-order, 13, 17, 18, 22, 30, 44, 45, 56, 60, 66, 74, 87, 134, 198, 205, 212, 214, 224, 296, 391
integral action, 4, 77, 78, 80
integral criterion
finite-time ITAE, see finite-time ITAE
IAE, see IAE
IE, see IE
ISE, see ISE
ITAE, see ITAE
integral of absolute error, see IAE
integral of squared errors, see ISE
integral of the error, see IE
integral of time weighted absolute error, see ITAE
integrated absolute error, see IAE
interlacing property, 292–295
interval uncertainty, 161
inverse Fourier transform, 16
inverse Laplace transform, 6, 43, 45, 53, 224, 227, 391, 391–394
irrational-order, 18, 21, 28, 152, 259, 391
ISE, 76, 88, 90, 249, 250
iso-damping property, 113, 123, 147
ITAE, 113, 116–118, 213, 249, 250, 255
iterated integral, 6
iterative algorithm, 261
Jordan canonical form, 369
Jordan matrix, 46
Jury, 23
Kalman filter, 74
lag dominant, 99, 101, 102
Laplace transform, 4, 15, 37, 42, 43, 53, 224, 225, 231, 260, 281, 391, 391–394
inverse Laplace transform, see inverse Laplace transform
LC filter, 368, 381
lead-lag compensator, 81, 133, 134
fractional-order lead-lag compensator, see fractional-order lead-lag compensator
linear time invariant, 12, 17, 18, 22, 34, 35
linearized model, 303, 307, 368, 369, 371, 374, 375
link deflection, 282
liquid level system, 125, 126, 160
load disturbance, 89, 90, 101, 102, 122
load disturbance rejection, 88, 89
local optimization, 124
loop shaping, 88, 89, 159, 160, 161
low-pass filter, 154, 172, 244, 299, 300, 365
LTI, see linear time invariant
Lyapunov stability, 277
magnitude Bode plot, 192, 312, 329
MARC, see model reference adaptive control
marginally stable, 294, 316
mass per unit length, 292
mass transport, 4, 262
MATLAB, 50, 51, 60, 198–210, 213–256
Control System Toolbox, see Control System Toolbox
Optimization Toolbox, see Optimization Toolbox
Real-Time Workshop, see Real-Time Workshop
Simulink, see Simulink
maximum sensitivity, 88
mechatronic platform, 358
memory, 4, 8, 18, 44, 61, 259, 323
memory length, 16
MIGO method, 88, 93, 100, 105
minimum-phase, 151, 197, 275, 371–373
MIT rule, 175–178
Mittag–Leffler function, 13, 14, 44, 46, 48, 51, 52, 213–217, 229, 256, 260
Mittag–Leffler function evaluation, 214–217
Mittag–Leffler function in more parameters, 215
Mittag–Leffler function in one parameter, 214
Mittag–Leffler function in two parameters, 15, 214, 215, 217, 259, 288, 289
Mittag–Leffler matrix function, 44, 50, 51
modal canonical form, 39–42, 50–52
model reference, 165
model reference adaptive control, 173–181
modified Oustaloup filter, 192, 195–196, 245, 256
motion control application, 107
motor inertia, 280, 284
motor-gear set, 281
Ms constrained integral gain optimization, see MIGO
multi-link flexible arms, 278
multinomial coefficient, 230
multiple-input multiple-output, see MIMO
multiplicity, 39, 227
n-fold integral, 5, 9, 10
N-integer toolbox, 192, 193, 213
natural frequency, 32, 281
neural network, 277
Newton’s second law, 280
Newton–Raphson technique, 94–96
Newtonian fluid, 40
Nichols chart, 155–157, 159, 241, 317, 329
nominal plant, 160, 278, 308, 311, 313, 317, 318, 321, 324, 329
nominal tip mass, 276
nominal value, 161, 278, 291, 310, 314, 317, 318
non-collocated system, 275
non-convex optimization, 158, 159
non-minimum-phase, 151, 370–372
nonlinear constraint, 125, 129
nonlinear control, 115
nonlinear equation, 94
nonlinear system, 243
nonlinear time-varying, 367
norm, 66, 238, 242–243
H_2 norm, see H_2 norm
H_{∞} norm, see H_{∞} norm
null matrix, 62
numerical solution, 15–16, 34, 214–223, 230
Nyquist path, 23, 24
Nyquist plot, 31, 75, 90, 143, 241, 294
Nyquist stability criterion, 294, 328
object-oriented programming, 213, 234
objective function, 76, 205, 252, 254, 256
observability, 35, 57–58, 71, 74
observability criterion, 58
observability Gramian, 71
observability matrix, 58
observable canonical form, 39
observer, 74
observer-based controller, 74
operating point, 310
operational calculus, 7
optimization, 88, 89, 91–95, 124, 126, 161, 206, 214, 242, 251–256, 300
constrained optimization, see constrained optimization
optimization constraint, 92, 124, 328
unconstrained optimization, see unconstrained optimization
Optimization Toolbox, 252
oscillation equation, 12
Oustaloup recursive approximation
modified Oustaloup recursive approximation, see modified Oustaloup filter
Oustaloup’s recursive approximation, 97, 112, 126, 152, 154, 186, 192–196, 208, 212, 244
output disturbance rejection, 123
output equation, 36, 39, 50, 57, 59, 72
output matrix, 35
overload function, 213, 234, 235, 239, 241, 242, 256

Parseval’s Theorem, 260
partial fraction expansion, 39, 45, 225, 227–229
particular solution, 13, 14
passivity, 275
PD$^\mu$, see fractional-order PD

peak sensitivity, 88, 90
phase crossover frequency, 324, 329
phase margin, 32, 75, 76, 107, 109, 111, 122, 133, 135–137, 142, 145, 161, 289, 313, 324, 372
PI, see proportional integral controller
PID, see proportional integral derivative
PI$^\lambda$D$^{\mu}$, see fractional-order PID
PI$^\lambda$, see fractional-order PI
FPI-PI controller, 320–322, 327, 330, 333
pole, 21, 25, 32, 39, 126, 135, 155, 193, 225, 239, 259, 292, 356, 391
pole placement, 278
pole-zero excess, 160
position control, 273, 284
position servo, 108, 355
positive unity-gain feedback, 282, 284
power electronic converters, 366
prewarping, 199
primitive, 5, 10
principal Riemann sheet, 22
proportional action, 4, 77, 78, 80
pulse width modulation, see PWM
pure integrator with time delay, 104
pure time delay system, 104
PWM, 365, 368, 376, 381, 384, 386
QFT, 158–163, 203, 300
quantitative feedback theory, see QFT
quarter amplitude damping design method, 88
ramp response, 114, 117
Randle’s equivalent circuit, 261, 262, 263
rational commensurate-order system, 37
rational-order, 17, 41
reachability, 68
reachability condition, 71, 166, 168, 172, 378–380
Real-Time Workshop, 115
reduction gear, 276, 279, 284
reference angle, 283
relative dead time, 88, 96, 97, 100, 101, 104–106
relative stability, 4, 77, 181
relaxation equation, 12, 31, 271
relay test, 142–147, 359, 360
relevant root, 21
reset control, 181–188
Riemann principal sheet, 23, 25, 27
Riemann surface, 19, 20
Riemann–Liouville’s definition, 6, 10, 11, 172, 185, 217
rigid robot, 77
rise time, 77, 187, 286, 289
robotic impedance control, 274
robust stability, 151, 160, 163, 314, 316, 324
robustness criterion, 133, 135, 140, 142, 145
Routh, 23, 178
sample, 59
sampling period, 59–61, 126, 141, 157, 198, 199, 203, 323, 325, 327, 355, 356, 361, 368
saturation, 300, 307, 361
secondary sheet, 20
semi-group property, 45, 64
sensitivity constraint, 91, 92
sensitivity derivative, 174
sensitivity function, 90, 122, 123, 126, 278
servo-amplifier system, 280
set-point, 89, 90, 307, 309, 325
short memory principle, 16, 323
signal processing, 198
Simulink, 116, 185, 212, 213, 243–248, 252, 253, 255, 359
single-input single-output, 37, 43, 54, see SISO
single-link flexible arm, 275, 278, 279, 282, 292, 295, 297, 300
sliding mode, 277, 375, 377
sliding mode control, 165, 188, 365, 375, 378, 381, 383, 384, 386
sliding surface, 165, 166, 168, 277, 366, 376–380, 382
SMC, see sliding mode control
Smith predictor, 301, 303, 304, 371, 372
spillover, 275, 277–279, 291–293, 296
stability boundary, 160, 162
stability condition, 21, 22, 37, 42, 66, 178, 294
stability margin, 66, 153, 278
stability radius, 68
state feedback, 74
state pseudo-transition matrix, 45, 46, 47, 49, 63, 64, 67
state transition matrix, 43, 45
state-space
state-space canonical realization, see canonical state-space representation
state-space difference equation, 62
steady-state error, 123, 154, 181, 255, 277, 313, 320, 327, 357, 377
steady-state error constant, 133, 140
step function, 52, 219, 220, 223, 246
step response invariant, 200
strain gauge, 282, 283, 285
structural root, 21, 21, 25, 26, 32
switching function, 165, 167, 168, 375
Sylvester’s interpolation formula, 47
symbolic method, 7, 220
Taylor’s matrix series, 46
template, 153, 159
test batch, 88, 96, 97
thermal system, 77
tip payload, 273, 276–278, 292, 295
trajectory tracking, 276, 277
transcendental function, 269
transfer function matrix, 36
transient response, 75, 77, 179, 277, 310, 377
tuning method, 87, 88, 106, 107, 117, 121, 122, 125, 133, 138, 355
Tustin method, 192, 198, 199
two-link flexible arm, 277
UHFB, see universal high-frequency boundary
uncertainty, 155, 159
uncertainty bound, 278
unconstrained optimization, 251
universal high-frequency boundary, 160
Vandermonde matrix, 47–49
variable structure control system, 165
velocity servo, 353, 355, 357
viscoelastic damped structure, 76
viscous friction, 280
VSCS, see variable structure control system
ω-transform, 370, 371, 381
Warburg impedance, 4, 262, 265, 271
Young’s modulus, 292
zero, 81, 126, 193, 259, 292, 356
zero-crossing detector, 182
zero-order hold, 59, 319, 355
Ziegler–Nichols tuning rule, 88, 89, 101, 121
ZOH, see zero-order hold
Other titles published in this series (continued):

Soft Sensors for Monitoring and Control of Industrial Processes
Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo and Maria G. Xibilia

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo

Advanced Control of Industrial Processes
Piotr Tatjewski

Process Control Performance Assessment
Andrzej W. Ordys, Damien Uduehi and Michael A. Johnson (Eds.)

Modelling and Analysis of Hybrid Supervisory Systems
Emilia Villani, Paulo E. Miyagi and Robert Valette

Process Control
Jie Bao and Peter L. Lee

Distributed Embedded Control Systems
Matjaž Colnarič, Domen Verber and Wolfgang A. Halang

Precision Motion Control (2nd Ed.)
Tan Kok Kiong, Lee Tong Heng and Huang Sunan

Optimal Control of Wind Energy Systems
Iulian Munteanu, Antoneta Iuliana Bratcu, Nicolaos-Antonio Cutululis and Emil Ceangă

Identification of Continuous-time Models from Sampled Data
Hugues Garnier and Liuping Wang (Eds.)

Model-based Process Supervision
Arun K. Samantaray and Belkacem Bouamama

Diagnosis of Process Nonlinearities and Valve Stiction
M.A.A. Shoukut Choudhury, Sirish L. Shah, and Nina F. Thornhill

Magnetic Control of Tokamak Plasmas
Marco Ariola and Alfredo Pironti

Real-time Iterative Learning Control
Jian-Xin Xu, Sanjib K. Panda and Tong H. Lee

Deadlock Resolution in Automated Manufacturing Systems
ZhiWu Li and MengChu Zhou

Model Predictive Control Design and Implementation Using MATLAB®
Liuping Wang

Fault-tolerant Flight Control and Guidance Systems
Guillaume Ducard

Predictive Functional Control
Jacques Richalet and Donal O'Donovan

Fault-tolerant Control Systems
Hassan Noura, Didier Theilliol, Jean-Christophe Ponsart and Abbas Chamseddine

Control of Ships and Underwater Vehicles
Khac Duc Do and Jie Pan

Detection and Diagnosis of Stiction in Control Loops
Mohieddine Jelali and Biao Huang

Stochastic Distribution Control System Design
Lei Guo and Hong Wang

Dry Clutch Control for Automotive Applications
Pietro J. Dolcini, Carlos Canudas-de-Wit, and Hubert Béchart

Active Control of Flexible Structures
Alberto Cavallo, Giuseppe De Maria, Ciro Natale and Salvatore Pirozzi

Nonlinear and Adaptive Control Design for Induction Motors
Riccardo Marino, Patrizio Tomei and Cristiano M. Verrelli

Active Braking Control Design for Road Vehicles
Sergio M. Savaresi and Mara Tanelli